The structure of the aquaporin-1 water channel: a comparison between cryo-electron microscopy and X-ray crystallography.

نویسندگان

  • Bert L de Groot
  • Andreas Engel
  • Helmut Grubmüller
چکیده

Three different medium-resolution structures of the human water channel aquaporin-1 (AQP1) have been solved by cryo-electron microscopy (cryo-EM) during the last two years. Recently, the structure of the strongly related bovine AQP1 was solved by X-ray crystallography at higher resolution, allowing a validation of the original medium-resolution structures, and providing a good indication for the strengths and limitations of state of the art cryo-EM methods. We present a detailed comparison between the different models, which shows that overall, the structures are highly similar, deviating less than 2.5 A from each other in the helical backbone regions. The two original cryo-EM structures, however, also show a number of significant deviations from the X-ray structure, both in the backbone positions of the transmembrane helices and in the location of the amino acid side-chains facing the pore. In contrast, the third cryo-EM structure that included information from the X-ray structure of the homologous bacterial glycerol facilitator GlpF and that was subsequently refined against cryo-EM AQP1 data, shows a root mean square deviation of 0.9A from the X-ray structure in the helical backbone regions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical Review Electron Crystallography of Aquaporins

Aquaporins are a family of ubiquitous membrane proteins that form a pore for the permeation of water. Both electron and X-ray crystallography played major roles in determining the atomic structures of a number of aquaporins. This review focuses on electron crystallography, and its contribution to the field of aquaporin biology. We briefly discuss electron crystallography and the two-dimensional...

متن کامل

Projection structure of a plant vacuole membrane aquaporin by electron cryo-crystallography.

The water channel protein alpha-TIP is a member of the major intrinsic protein (MIP) membrane channel family. This aquaporin is found abundantly in vacuolar membranes of cotyledons (seed storage organs) and is synthesized during seed maturation. The water channel activity of alpha-TIP can be regulated by phosphorylation, and the protein may function in seed desiccation, cytoplasmic osmoregulati...

متن کامل

Two-dimensional crystal structure of aquaporin-4 bound to the inhibitor acetazolamide

Acetazolamide (AZA) reduces the water permeability of aquaporin-4, the predominant water channel in the brain. We determined the structure of aquaporin-4 in the presence of AZA using electron crystallography. Most of the features of the 5-Å density map were consistent with those of the previously determined atomic model. The map showed a protruding density from near the extracellular pore entra...

متن کامل

Single-particle imaging of macromolecules by cryo-electron microscopy.

Cryo-electron microscopy (cryo-EM) of biological molecules in single-particle (i.e., unordered, nonaggregated) form is a new approach to the study of molecular assemblies, which are often too large and flexible to be amenable to X-ray crystallography. New insights into biological function on the molecular level are expected from cryo-EM applied to the study of such complexes "trapped" at differ...

متن کامل

Macromolecular structure determination by cryo-electron microscopy.

Recent advances in transmission electron microscopy (EM) hardware, low-temperature methods and image-processing software have made cryo-EM an important complement to X-ray crystallography and NMR for macromolecular structure determination, particularly of large assemblies. This review provides a summary of the main advances and a survey of the capabilities of this approach.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 325 3  شماره 

صفحات  -

تاریخ انتشار 2003